Search results for "Lithium-ion batteries"

showing 9 items of 9 documents

Oligophenyls with Multiple Disulfide Bridges as Higher Homologues of Dibenzo[c,e][1,2]dithiin: Synthesis and Application in Lithium-Ion Batteries.

2020

Abstract Higher homologues of dibenzo[c,e][1,2]dithiin were synthesized from oligophenyls bearing multiple methylthio groups. Single‐crystal X‐ray analyses revealed their nonplanar structures and helical enantiomers of higher meta‐congener 6. Such dibenzo[1,2]dithiin homologues are demonstrated to be applicable to lithium‐ion batteries as cathode, displaying a high capacity of 118 mAh g−1 at a current density of 50 mA g−1.

dibenzo[12]dithiinoligophenylspolycyclesCommunicationOrganic Chemistrylithium-ion batteriesSulfur Heterocycles | Hot Paperchemistry.chemical_elementGeneral ChemistryCatalysisCathodeCommunicationssulfur heterocyclesIonlaw.inventionCrystallographychemistrylawLithiumEnantiomerCurrent densityChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Blockchain review for battery supply chain monitoring and battery trading

2022

The use of technologies such as Internet of Things (IoT), data processing and blockchain have allowed companies to serve their customers with better quality, efficiency, reliability and in the shortest possible time. The growing adoption of electric vehicles on the market has increased the demand for batteries that may have numerous manufacturers. Life expectancy is affected on manufacture, but also on operational conditions. A large number of parameters have a role on battery's health and thousands of data need to be evaluated and combined. The present work investigates the scenario of the battery industry in order to implement a blockchain-based platform for the supply chain implementatio…

Lithium-ion batteriesBlockchainElectric vehiclesRenewable Energy Sustainability and the EnvironmentSecond-life batteriesReuseSupply chainSecond use
researchProduct

Nanostructured Material Fabrication for Energy Conversion

2011

The electrochemical deposition is a suitable via to fabricate nanostructured materials for energy conversion, and for other purposes. This paper deals with the electrochemical synthesis of nanostructured alloys and ruthenium oxide, which can be used in Li-ion batteries and polymer electrolyte membrane electrolyzers.

Nanostructured materialMaterials scienceFabricationnanowireelectrodepositionNanostructured materials; electrodeposition; nanowires; lithium-ion batteries; polymer electrolyte membrane electrolyzersEnergy transformationNanotechnologypolymer electrolyte membrane electrolyzerslithium-ion batterie
researchProduct

An Innovative Conversion Device to the Grid Interface of Combined RES-Based Generators and Electric Storage Systems

2015

This paper is focused on the development of an innovative device, which is based on a bidirectional converter, for the interface to the supply utility grid of combined renewable-energy-source-based generators and electric storage systems. The device can be controlled so as to ease the interface between the low-voltage grid and photovoltaic or wind generators combined with lithium-ion $\hbox{LiFePO}_{4} $ batteries, taking into account the requirements of the reference technical standards for users connection and offering different ancillary services. The operational functioning of the device, the architecture, and its electronic components, as well as laboratory and field test activities an…

Engineeringbusiness.industryBidirectional converter energy storage system (EES) grid interface lithium-ion batteriesInterface (computing)Photovoltaic systemlithium-ion batteries;Bidirectional converter;grid interface;energy storage system (EES)lithium-ion batteriesTechnical standardElectrical engineeringGridlithium-ion batterieBidirectional converterField (computer science)Settore ING-IND/33 - Sistemi Elettrici Per L'EnergiaControl and Systems Engineeringenergy storage system (EES)visual_artgrid interfaceElectronic componentvisual_art.visual_art_mediumElectronic engineeringElectricityElectrical and Electronic EngineeringConnection (algebraic framework)business
researchProduct

Towards a business model for second-life batteries: Barriers, opportunities, uncertainties, and technologies

2023

Electric vehicles (EVs) and the recent pandemic outbreak give cities a new trend to primarily private and shared mobility with low noise and less air pollution. Crucial factors for the widespread of EVs are the electrical charging infrastructure, driving range, and the reduction of the cost of battery packets. For this reason, there is a massive effort from manufacturers, governments, and the scientific community to reduce battery costs and boost sustainable electrical production and distribution. Battery reuse is an alternative to reduce batteries’ costs and environmental impacts. Second-life batteries can be used in a wide variety of secondary applications. Second-life batteries can be co…

Settore ING-IND/33 - Sistemi Elettrici Per L'EnergiaSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniFuel TechnologyElectrochemistryEnergy Engineering and Power TechnologyBusiness models Batteries Sustainability Electric vehicles Challenges Opportunities Lithium-ion batteries ReuseEnergy (miscellaneous)Journal of Energy Chemistry
researchProduct

High-performing Sn-Co nanowire electrodes as anodes for lithium-ion batteries

2012

Abstract The preparation of Sn 2 Co 3 nanowire arrays (NWs) electrogrown inside the channels of polycarbonate membranes and their characterization as anodes for Li-ion batteries both in half-cell vs. Li and in battery configuration are reported. The Sn 2 Co 3 NW electrodes tested by deep galvanostatic charge/discharge cycles in ethylene carbonate-dimethylcarbonate (1:1) – LiPF 6 1 M displayed 80% capacity retention after 200 cycles at C/2 and 30 °C, and a high charge and discharge rate capability at C-rate from C/3 (0.33 A/g) to 10C (10 A/g) at 30° and 10 °C. Electrodes with the highest alloy loading delivered up to 0.6 mAh cm −2 at C/2. The performance of these electrodes in battery config…

Battery (electricity)Materials scienceInorganic chemistryNanowireEnergy Engineering and Power Technologychemistry.chemical_elementLi-ion batterieslaw.inventionTEMPLATE SYNTHESISlawSN-BASED ANODEElectrical and Electronic EngineeringPhysical and Theoretical ChemistryLITHIUM-ION BATTERIESTin-cobalt alloyRenewable Energy Sustainability and the EnvironmentSN-CO ELECTRODESVinylene carbonate additiveCathodeAnodeAnodeNanowireSettore ING-IND/23 - Chimica Fisica ApplicatachemistryChemical engineeringTinElectrodeLithiumTinFaraday efficiency
researchProduct

Assessing the Electrochemical Performance of Different Nanostructured CeO2 Samples as Anodes for Lithium-Ion Batteries

2021

In this work, six samples of CeO2 are successfully prepared by diverse synthesis routes leading to different microstructures regarding both morphology and particle size. The structural and microstructural characteristics presented by the samples and their influence on the electrochemical response of the prepared anodes are analyzed. In particular, the Ce-CMK3 sample, synthesized from a mesoporous carbon obtained through a CMK3 silica template, displays an enhanced electrochemical response. Thus, capacity values of ~220 mA h g−1 are obtained at a current rate of 0.155 A g−1 after 50 cycles and an excellent cyclability at intermediate current densities. On the other hand, it is observed that …

Fluid Flow and Transfer ProcessesTechnologyQH301-705.5Process Chemistry and TechnologyTPhysicsQC1-999lithium-ion batteriesGeneral EngineeringEngineering (General). Civil engineering (General)Química inorgánicaComputer Science Applicationsanode materialsChemistryanode materials; cerium oxide; lithium-ion batteries; nanostructured ceriananostructured ceriaGeneral Materials ScienceTA1-2040Biology (General)Instrumentationcerium oxideQD1-999Applied Sciences; Volume 12; Issue 1; Pages: 22
researchProduct

Bi2Se3 Nanostructured Thin Films as Perspective Anodes for Aqueous Rechargeable Lithium-Ion Batteries

2022

This research was funded by the European Regional Development Fund Project (ERDF) No. 1.1.1.1/19/A/139. Y.R. acknowledges the support of post-doctoral ERDF project No. 1.1.1.2/VIAA/4/20/694. V.L. also acknowledges the support of “Strengthening of the capacity of doctoral studies at the University of Latvia within the framework of the new doctoral model”, identification No. 8.2.2.0/20/I/006. A.S. acknowledges the support from the Institute of Solid State Physics, University of Latvia, which, as the Center of Excellence, has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

anodeaqueous rechargeable lithium-ion batteries (ARLIBs)bismuth oxide (Bi2O3)bismuth selenide (Bi<sub>2</sub>Se<sub>3</sub>); anode; aqueous rechargeable lithium-ion batteries (ARLIBs); solid electrolyte interphase (SEI); bismuth oxide (Bi<sub>2</sub>O<sub>3</sub>); electrochemical performanceElectrochemistryelectrochemical performanceEnergy Engineering and Power Technology:NATURAL SCIENCES::Physics [Research Subject Categories]Electrical and Electronic Engineeringsolid electrolyte interphase (SEI)bismuth selenide (Bi2Se3)
researchProduct

Effect of Reaction Conditions on the Coprecipitation of Ni(OH)2 for Lithium-Ion Batteries

2023

Electrochemical performance of cathode active materials (CAMs) is dependent on the properties of coprecipitated precursors (pCAMs). This is a sensitive process affected by several reaction parameters such as temperature, pH, concentration of reactants, agitation rate, and residence time. In this paper, the effect of parameters influencing the particle size growth and the physical properties, such as particle morphology and tapped density, was studied in the coprecipitation of Ni(OH)2. Formation of a homogeneous population with narrow particle size distribution was observed, followed by a more heterogeneous population of dense particles. Ammonia concentration and residence time had significa…

tietokoneavusteinen valmistuscoprecipitation of Ni(OH)2battery chemicalslithium-ion batteriesnickelhydroxidelitiumioniakut
researchProduct